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Approaches for the direct estimation of k ,
and demographic contributions to k , using
capture- recapture data

JAMES D. NICHOLS & JAMES E. HINES, US Geological Survey, Patuxent

Wildlife Research Center, MD, USA

abstract We ® rst consider the estimation of the ® nite rate of population increase or

population growth rate, k i , using capture- recapture data from open populations. We

review estimation and modelling of k i under three main approaches to modelling open-

population data: the classic approach of Jolly (1965) and Seber (1965), the superpopula-

tion approach of Crosbie & Manly (1985) and Schwarz & Arnason (1996), and the

temporal symmetry approach of Pradel (1996). Next, we consider the contributions of

diþ erent demog raphic components to k i using a probabilistic approach based on the

composition of the population at time i + 1 (Nichols et al., 2000b). The parameters of

interest are identical to the seniority parameters, c i , of Pradel (1996). We review estimation

of c i under the classic, superpopulation, and temporal symmetry approaches. We then

compare these direct estimation approaches for k i and c i with analogues computed using

projection matrix asymptotics. We also discuss various extensions of the estimation

approaches to multistate applications and to joint likelihoods involving multiple data types.

1 Introduction

Population size (N i at time i ) is the state variable of interest in most management

and conservation programmes designed for animal populations. The expected rate

of change in this state variable ( k i 5 E(N i + 1 /N i)) is an important metric for judging

population `health’ and assessing eþ ects of management actions. A related topic is

the relative contribution of diþ erent components of the population, or of diþ erent

vital rates associated with these components, to population growth. Metrics

re¯ ecting such contributions can be useful in focusing investigative eþ orts and
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540 J. D. Nichols & J. E. Hines

management actions on components likely to produce the largest in¯ uence on

population change. In this paper, we ® rst discuss recently developed approaches

for estimating k i and contributions to k i , from capture- recapture data. We then

discuss the broader question of how these direct estimation approaches relate to

other approaches designed to provide similar kinds of inferences. We also discuss

the potential for combining these estimation approaches for capture- recapture data

with other data sources in order to obtain better estimates and address interesting

population-dynamic questions.

2 Estimation of i̧

There are multiple, equivalent ways to write the likelihood for open model capture-

recapture data (e.g. Williams et al., in press), and these approaches diþ er in their

treatment of abundance, N i , and hence in the estimation of rate of change in

abundance, k i . Here, we discuss estimation of k i under three general approaches to

modelling capture- recapture data from open populations. We will devote most

space to the temporal symmetry approach of Pradel (1996) that readily permits

direct modelling of k i and is implemented in available computer software (White

& Burnham, 1999). We focus on single-age populations at a single study location

and note extensions in Section 4. Throughout this paper, we will view abundance,

N i , as a random variable determined by stochastic demographic processes. Although

it is reasonable to consider both realized and expected population growth rate,

here we will de® ne k i as the expected rate of population growth, k i 5 E(N i + 1/N i).

2.1 Jolly- Seber and robust design approaches

Ever since the publication of the classic papers by Jolly (1965) and Seber (1965),

it has been clear that k i can be estimated from capture- recapture data on open

populations. Jolly (1965) and Seber (1965) showed how to estimate abundances

N 2 through NK 2 1 for a K-period capture- recapture study. Population growth rate

between successive periods can then be estimated as:

k Ã i 5
NÃ i + 1

NÃ i

i 5 2, . . . , K 2 2 (1)

where the NÃ i are the Jolly- Seber estimates for abundance. If Pollock’ s robust design

is implemented (Pollock, 1982; Pollock et al., 1990), with li secondary capture

periods within each primary period, i, then closed-model estimators (e.g. Otis

et al., 1978) can be used to estimate N i within each primary period. These closed-

model estimates can be used in conjunction with equation (1) to estimate k i for

periods i 5 1, . . . , K 2 1.

The capture- recapture model developed by Jolly (1965) and Seber (1965) is

parameterized only with survival, } i , and capture, p i, probabilities. Abundance, N i ,

and new recruits, B i , are treated as unknown random variables to be estimated.

The following assumptions typically are listed for the Jolly- Seber model (e.g. Seber,

1982; Pollock et al., 1990) and are required for reasonable estimates of abundance,

N i, and thus k i .

(1) Every animal (marked and unmarked) present in the population at sampling

period i has the same probability p i of being captured or sighted.
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Approaches for the direct estimation of k 541

(2) Every marked animal present in the population immediately following the

sampling in period i has the same probability } i of survival until sampling

period i + 1.

(3) Marks are neither lost nor overlooked, and are recorded correctly.

(4) Sampling periods are instantaneous (in reality they are very short periods)

and recaptured animals are released immediately.

(5) All emigration from the sampled area is permanent.

(6) The fate of each animal with respect to capture and survival probability is

independent of the fate of any other animal.

Discussion of the consequences of violating these assumptions for Jolly- Seber

estimates can be found in various sources (e.g. Seber, 1982; Pollock et al., 1990;

Williams et al., in press).

2.2 Superpopulation approach

The superpopulation approach (Crosbie & Manly, 1985; Schwarz & Arnason,

1996) to modelling capture- recapture data from open populations focuses on a

parameter, N , denoting the total number of animals that are ever available for

capture in the population of interest over the course of the study (it includes any

animal available for capture at any sampling period, 1 through K ). An alternative

de® nition of superpopulation includes any animal that was a member of the

sampled population during the course of the study, regardless of whether or not it

was available on any sampling occasion. In terms of quantities de® ned by Jolly

(1965) and Seber (1965, 1982), and using our initial de® nition of superpopulation,

N can be written as:

N 5 +
k 2 1

i 5 0

B i (2)

where B i is de ® ned as the number of new animals in the population at sampling

period i + 1 that were not present in the population at i, with B 0 5 N 1 (i.e. all

animals in the population the ® rst sampling period are `new’ with respect to

sampling). The random variables B i are viewed as following a multinomial distribu-

tion (see Schwarz & Arnason, 1996), with the members of the superpopulation

entering the sampled population at the diþ erent sampling periods according to

entry parameters, b i ; i.e. {B 0, . . . , B K 2 1} is distributed as a multinomial with

parameters (N ; b 0 , . . . , b k 2 1), where R k 2 1
i 5 0 b i 5 1.

De® ne per capita survival and recruitment rates as follows:

} i 5 survival probability, the probability that an animal alive at sampling period

i is still alive and in the population at sampling period i + 1;

fi 5 per capita recruitment rate, the expected number of new animals in the

population at time i + 1 per animal in the population at time i ( fi 5 E(B i /N i)).

The likelihood used by Schwarz & Arnason (1996) for the superpopulation

approach contains as parameters survival probabilities, } i , capture probabilities, p i ,

and the entry probabilities, b i . In the following development for estimation of k i ,

we assume the simple case of no losses on capture, for ease of presentation. The
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542 J. D. Nichols & J. E. Hines

per capita recruitment rate, fi , is not a parameter of the superpopulation likelihood,

but can be written in terms of these parameters as (Schwarz, 2001):

fi 5
b i

+
i 2 1

j 5 0 f b j *
i 2 1

l 5 j +1

} l g
.

(3)

The numerator of equation (3) is simply the probability that a member of N enters

the sampled population between times i and i + 1 and is available for capture at

i + 1. The denominator re¯ ects the probability that a member of N was alive and

in the population in period i.

The expected value for abundance at sampling period i + 1, conditional on

abundance at time i, can be written as:

E(N i +1 ½ N i) 5 N i( } i + fi) . (4)

Equation (4) simply de® nes the expected population size in sampling period i + 1

as the sum of expected survivors and new recruits, written as the product of

abundance and the sum of survival probability and recruitment rate. Equation (4)

can be rearranged, and population growth rate written as follows:

k i 5 } i + fi . (5)

Equation (5) expresses expected population growth rate intuitively, as the sum of

survival and recruitment rates. Note that } i has been de® ned as a survival probabil-

ity, and fi as an expected recruitment rate; hence their sum equals the expected popu-

lation growth rate. However, it is also true that the sum of the actual fraction of

animals surviving from i to i + 1 and the realized recruitment rate, B i /N i , equals the

realized population growth rate.

Regarding estimation, the } i and b i are estimated numerically using maximum

likelihood (Schwarz & Arnason, 1996), and the fi can then be estimated by

substituting the b Ã i and u i into equation (3). Estimates of } i and fi are then

substituted into equation (5) to estimate k i . The full, time-speci® c model ( } i ,p i , b i)

presents identi® ability problems that must be overcome through constraints such

as p1 5 pK 5 1, or perhaps p1 5 p2, pK 2 1 5 pK (see Schwarz & Arnason, 1996). Estima-

tion under superpopulation models is accomplished using POPAN5 (Arnason &

Schwarz, 1999).

All the assumptions required under the Jolly- Seber model (Section 2.1) are

required by the superpopulation approach as well. The primary distinction between

the Jolly- Seber and superpopulation approaches to modelling involves the

unmarked animals that are caught during the study. The new parameters required

under the superpopulation approach are the entry probabilities, b i , i.e. the probabili-

ties that members of the superpopulation are unavailable for capture (e.g. not

previously present on the study area) until after sampling period i, and then enter

the study population and are exposed to sampling e þ orts at period i + 1. The

multinomial modelling assumes homogeneity of these entry probabilities. Thus, all

members of the superpopulation N that have not yet become available for potential

capture as of sampling period i 2 1, are assumed to exhibit the same probability of

being in the group of animals exposed to sampling eþ orts at period i.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
8:

34
 2

0 
Fe

br
ua

ry
 2

01
6 



Approaches for the direct estimation of k 543

2.3 Pradel’s temporal symmetry approach

2.3.1 Reverse-time modelling. Survival rate estimation under capture- recapture

models for open populations such as the Cormack- Jolly- Seber (CJS) model

(Cormack, 1964; Jolly, 1965; Seber, 1965) proceeds by conditioning on releases

in earlier time periods and following the fates of these animals in later time periods.

Pollock et al. (1974) noted that if the capture history data are considered in reverse

time order, conditioning on animals caught in later time periods and observing

their captures in earlier occasions, then inference can be made about the recruitment

process. Speci® cally, `a backward process with recruitment and no mortality is

statistically equivalent to a forward process with mortality and no recruitment’

(Pollock et al., 1974, pp. 85 - 86). This reverse-time approach was used by Nichols

et al. (1986) and then developed independently by Pradel (1996), who also

developed a full likelihood that simultaneously incorporates survival and recruit-

ment parameters and thus permits the direct modelling of population dynamics.

The standard, CJS approach to modelling capture-history data is based on

survival ( } i) and capture ( p i) probability parameters. In addition, de® ne v i param-

eters that specify the probability that an animal alive and in the study population

just following sampling period i is not caught or observed again at any sampling

period after period i. For a K-period study, v K 5 1 and values for other sampling

periods (i< K) can be computed recursively as functions of the survival and capture

probability parameters:

v i 5 (1 2 } i) + } i (1 2 p i + 1)v i +1 .

Consider the probability associated with the capture history 011010, indicating

capture in periods 2, 3, and 5 of a 6-period study:

Pr{011010 ½ release at period 2} 5 } 2 p3 } 3 (1 2 p4 ) } 4 p5 v 5 .

The statistical model for this history requires conditioning on the initial capture in

sampling period 2, and then proceeds by modelling the events in the remainder of

the capture history.

The conditional, reverse-time models of Pradel (1996) require the following

parameters:

c i the probability that an animal present just before sampling occasion i was

present in the sampled population just after sampling at occasion i 2 1;

p ¢i the probability that an animal present just after sampling at time i was

captured at i ;

n i the probability of not being seen at sampling periods before i for an animal

present immediately before i.

The c i ,p ¢i , n i are the reverse-time analogue of the } i ,p i ,v i used in standard CJS

modelling. As with the forward-time v i , the reverse-time n i can be computed

recursively, as

n i 5 (1 2 c i) + c i(1 2 p ¢i 2 1 ) n i 2 1

for i 5 2, . . . , K , and n 1 5 1. Again consider history 011010. For reverse-time

modelling, we condition on the ® nal capture and model prior events in the capture

history:

Pr{011010 ½ last capture at period 5} 5 c 5(1 2 p ¢4)c 4 p ¢3c 3 p ¢2n 2 .
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544 J. D. Nichols & J. E. Hines

The temporal symmetry models of Pradel (1996) essentially use both forward- and

reverse-time modelling simultaneously (see below).

The parameter de® nitions above make reference to times just before and just

after sampling, as this separation becomes important for the modelling when there

are losses on capture. De® ne N
2
i and N +

i respectively as abundance just before

and after sampling period i. De® ning d i as the number of animals that are caught

at i and not released back into the population following sampling, we can write

N +
i 5 N

2
i 2 d i . We denote as g i the probability that an animal captured in period i

survives trapping and handling and is released back into the population.

The need for diþ erent capture probability parameters for forward-time (p i) and

reverse-time (p ¢i ) modelling also stems from losses on capture. The simultaneous

use of reverse-time and forward-time modelling requires a relationship between the

two capture probability parameters (Focusing on the capture probability for

forward-time modelling, the relationship between N
2
i and N +

i can be written as:

N +
i 5 N

2
i [1 2 p i(1 2 g i)] . (6)

Equation (6) simply indicates that a member of N
2
i must survive the possibility of

being caught and removed from the population in order to become a member of

N +
i . Thus, the probability that a member of N +

i was captured in sampling period i is

p ¢i 5
p i g i

1 2 p i(1 2 g i)

Note that when all animals are released following capture (g i 5 1), the forward-

and reverse-time capture probabilities are equal, p ¢i 5 p i .

2.3.2 Temporal symmetry models: development. Simultaneous forward-time and

reverse-time modelling proceeds by conditioning on the number of animals in the

population at the initiation of the study, N
2
1 5 B 0. The expected number of animals

in the population at later times is determined by considering the rate of population

growth between successive sampling occasions. Expressions for population growth

rate can be obtained by considering two alternative ways of writing the expected

number of animals alive in two successive sampling occasions. Based on forward-

time and reverse-time model we can write this expectation as N +
i } i 5 N

2
i + 1 c i + 1.

Solving this approximate equality yields an expression for population growth rate:

k i 5 E(N
2
i +1 /N +

i )
(7)

» } i /c i +1 .

Equation (7) is relevant to biological changes in the population, but does not account

for animals that are captured and not released back into the population. To account

for animals not released, we can write the expectation for a modi® ed rate of popula-

tion change ( k ¢i ) that also incorporates losses of animals during sampling:

k ¢ i 5 E(N
2
i +1 /N

2
i )

» k iE (N +
i /N

2
i ) (8)

»
} i(1 2 p i [1 2 g i])

c i +1

.
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Approaches for the direct estimation of k 545

The k i of equation (7) thus re¯ ects the growth rate that would presumably have

occurred in the absence of sampling (and associated trap mortality), whereas the

k ¢i de® ned in equation (8) re¯ ects the expected growth in the presence of sampling

and trap mortality.

The expected number of animals exhibiting capture history 011010 under

Pradel’ s (1996) temporal symmetry model can now be written as:

E(x011010 ½ N
2
1 ) 5 N

2
1 k ¢1n 2 p2 g 2 } 2 p3 g 3 } 3 (1 2 p4 ) } 4 p5 g 5 v 5 (9)

The term, N
2
1 k ¢1 gives the expected number of animals in the population just before

sampling period 2, and n 2 is the probability that an animal in this group was not

caught prior to sampling period 2 (i.e. was not caught at 1). The animals exhibiting

this history were caught at period 2, and the associated probability is p2 . They

survived the sampling of period 2 to be released again (we know this because they

were seen in subsequent periods), and the probability associated with surviving

sampling is g 2. The subsequent (for sample periods > 2) modelling is similar to

that of the CJS model (e.g. Lebreton et al., 1992), except that survival probabilities

for the sampling process now are incorporated into the model. Thus, every capture

event requires both a capture probability p i, and a probability g i , of surviving the

sampling process.

Equation (9) does not lead directly to a probability distribution, because the

expectation contains the initial population size, N
2
1 , an unknown random variable.

Let xh be the number of animals exhibiting capture history h, and M denote the

total number of animals caught in the entire study:

M 5 +
h

xh .

The expected number of animals caught during a study can be written as the sum

of the expected number of animals seen for the ® rst time at each sampling occasion:

E(M ) 5 +
K

i 5 1

n iN
2
i p i

(10)

5 N
2
1 +

K

i 5 1

n i p i ( *
i 2 1

j 5 1

k ¢ j) .

Finally, the conditional probability (conditioned on the total M of animals caught)

associated with a particular capture history (denote as P(h)) can be obtained by

dividing the expected number of animals with that history (e.g. as in equation (9))

by the expected number of total individual animals caught during the study (as in

equation (10)):

P(h) 5
E(xh )

E(M)
. (11)

From equations (9) and (10) the initial population sizes in the numerator and

denominator of equation (11) cancel, leaving the conditional probabilities of

interest expressed in terms of estimable model parameters. Then the likelihood L

for the set of animals observed in a study can be written generally as the product

of the conditional probabilities associated with all the individual capture histories:

L 5 *
h

P(h)xh . (12)
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546 J. D. Nichols & J. E. Hines

Pradel (1996) rewrites this likelihood in more detail in terms of the model

parameters and suý cient statistics.

2.3.3 Temporal symmetry models: alternative parameterizations. Pradel (1996) sug-

gested three diþ erent parameterizations for the above likelihood, each of which

might be useful in addressing speci® c questions, and all of which retain capture

(p i) and survival ( } i) probabilities. Of these, we believe that the most natural

parameterization incorporates the reverse-time parameters c i . Thus, equation (8)

is substituted into the capture history expectations (equations (9) and (10)), so

that all probabilities (Ph ) are written in terms of p i , } i and c i .

A second parameterization uses population growth rate k i as a model parameter.

Based on the de® nition in equation (7), the following expression is substituted for

the c i of the original parameterization:

c i 5
} i 2 1

k i 2 1

. (13)

A third parameterization is based on a measure fi of recruitment rate, de® ned

above as the expected number of recruits to the population at time i + 1 per animal

present in the population at i . Substituting expression (5) into equation (13), it is

seen that a model with fi can be obtained by substituting

c i 5
} i 2 1

} i 2 1 + fi 2 1

(14)

for c i of the original parameterization.

Maximum likelihood estimates can be obtained for the likelihood of equation

(12), or its analogue based on su ý cient statistics (Pradel, 1996). In Pradel’ s (1996)

initial implementation of this model, he used a logit transform for } i and c i as a

means of constraining these parameters to the interval [0, 1]. For the k i parameter-

ization, Pradel (1996) used a log transform for population growth rate ( k i), in

order to constrain it to be positive. All three parameterizations ([ } t , pt , c t], [ } t , pt , k t],

[ } t ,p t , ft], where t denotes time-speci® city) described above have been implemented

in program MARK (White & Burnham, 1999). The implementation in MARK

appears to provide approximately unbiased estimates for the case of no losses on

capture, but not for the case of losses on capture. The magnitude of the bias is a

function of magnitude of g i , the probability of surviving trap mortality, and if this

probability is very high, then the estimates provided by MARK will not exhibit

large bias (Hines & Nichols, this issue). The GAUSS program written by Hines

and described by Pradel (1996) does provide approximately unbiased estimates of

k i and k ¢i for the full temporal symmetry model even when there are losses on

capture.

Pradel’s temporal symmetry models are relatively new and have seen only limited

use. It appears that the numerical optimization algorithms may sometimes perform

better (e.g. fewer convergence problems) with the c -parameterization than with the

other two parameterizations.

If primary interest is in population growth rate, it may be reasonable to ® t model

( } t , pt , c t ) to data, and then estimate population growth rate by substitution using

equation (7) or (8). This estimator (7) is also computed in program MARK (White

& Burnham, 1999). The parameter fi can be estimated in a similar manner, based
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Approaches for the direct estimation of k 547

on estimates from model ( } t , pt , c t) and a rearrangement of equation (14):

fÃ i 5
} Ã i(1 2 c Ã i +1 )

c Ã i + 1

for i 5 2, . . . , K 2 2.

Future work on the models of Pradel (1996) should include detailed investi-

gations of the identi® ability of parameters under the diþ erent model parameteriza-

tions. The approach of Catchpole et al. (1998), based on the rank and eigenstructure

of the matrix of derivatives of expectations of the data with respect to the parameter

vector under the model, should be especially useful in such investigations. Under

the time-speci® c model with c -parameterization ( } t , pt , c t ) the parameters

} 1 , } 2 , . . . , } K 2 2; p2, p3, . . . , pK 2 1; c 3, c 4, . . . , c K ; c 2 p1; } K 2 1pk

can be estimated. Note that the list includes K 2 2 survival parameters, K 2 2

capture probabilities, K 2 2 seniority parameters and two product parameters with

components not separately identi® able, yielding a total of 3(K 2 2) + 2 5 3K 2 4

parameters. Under the time-speci® c model with k -parameterization ( } t , pt , c t) the

parameters

} 1, } 2, . . . , } K 2 2; p2,p3, . . . , pK 2 1; k 2, k 3, . . . , k K 2 2; k 1 /p1; } K 2 1pk; k K 2 1pk

can be estimated. This parameter list includes K 2 2 survival parameters, K 2 2

capture probabilities, K 2 3 population growth rates, and three product parameters,

yielding a total of 2(K 2 2) + (K 2 3) + 3 5 3K 2 4 parameters.

Various types of alternative modelling should be possible using the basic para-

meterizations of Pradel (1996), and the potential for addressing interesting bio-

logical questions is discussed in Section 4. One methodological topic meriting

consideration in reduced-parameter models that utilize these parameterizations

involves the manner in which the k i and fi parameters are de® ned as functions of

} i , parameters that also appear in the model (e.g., see equations (13) and (14)).

Thus, modelling one set of parameters as temporally constant (e.g. } i 5 } ) may

impose unintended constraints on the parameters k i or fi . Because of the lack of

work on this topic, we simply recommend caution at this time. In cases where

interest is focused on a parameter such as k i , a conservative approach might be to

allow full time-speci® city in capture and especially survival probabilities when

evaluating alternative models for the k i . However, whether this approach performs

better than others is yet to be determined.

Another consequence of placing constraints on the diþ erent parameters of

Pradel’ s (1996) models involves the identi® ability of other parameters. Consider

the following reduced-parameter models, model ( } t , pt , c .) and model ( } t ,p t , k .).

Under model ( } t , pt , c .), the constant c permits the estimation of p1, but not of the

separate components of the product parameter } K 2 1pK . This model thus contains

K 2 2 survival rates, K 2 1 capture probabilities, the single c , and the product

parameter } K 2 1 pk for a total of 2K 2 1 parameters to be estimated. However, under

model ( } t , pt , k .), the constraint on k permits estimation of p1, pK and } K 2 1, for a

total of 2K estimable parameters. This example simply illustrates that the selected

parameterization has consequences for issues such as identi® ability. Once again the

approach of Catchpole et al. (1998) for investigating issues of identi® ability should

be especially useful in considering reduced-parameter models.
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548 J. D. Nichols & J. E. Hines

2.3.4 Temporal symmetry models: use with resighting data. It is possible to use the

approach of Pradel (1996) to estimate k i based only on resightings of marked

birds (Dreitz et al., this issue). The general sampling situation basically involves

resightings of adult birds banded in previous years, often as young. It is well-known

that survival estimates (e.g. Cormack, 1964; Jolly, 1965; Seber, 1965; Lebreton

et al., 1992) are based on marked animals only. Similarly, it is possible to estimate

abundance using resighting data with additional data on the number of unmarked

(e.g. animals sighted at each sampling period, u i , e.g. Hestbeck & Malecki, 1989).

These unmarked animals are not released with marks back into the population and

are thus essentially treated as losses on capture when using common computing

software. In order to estimate population size, the capture probabilities are estimated

based on the marked animals only (m i denotes the number of marked animals

caught in sampling period i ) and then applied to the unmarked animals as well:

NÃ i 5
u i + m i

pÃ i

. (15)

It is clear that resighting data from such a sampling design can be used to estimate

k i . For example, the estimator in equation (15) can be used in conjunction with

the estimator in equation (1).

Data from this type of resighting design can also be used to estimate k i using the

temporal symmetry approach of Pradel (1996). The unmarked data are again

treated as losses on capture, such that the usual parameter denoting the probability

that a captured bird survives the capture process, g i , now denotes the probability

that a randomly selected bird from all those sighted at time i is a marked bird.

Stated diþ erently, g Ã i estimates the proportion of marked birds among the entire

sample of sighted birds. The usual estimator of k i from equation (7) now estimates

nothing of interest, whereas the estimator (equation (8)) developed to deal with

losses on capture (denoted as k ¢i ) estimates the growth rate for the population.

Because the g i are likely to be relatively small in such resighting studies, we

recommend the use of software that explicitly incorporates losses on capture in the

implementation of the Pradel (1996) models (also see Hines & Nichols, this issue).

2.3.5 Assumptions underlying temporal symmetry models. As Pradel’ s (1996) tem-

poral symmetry models simply represent diþ erent ways to parameterize the original

Jolly- Seber model, the basic assumptions are the same as for the Jolly- Seber and

superpopulation approaches (see Sections 2.1 and 2.2). The general assumption

of homogeneity of rate parameters now applies to Pradel’ s c i as well as to the usual

p i and } i . Cormack- Jolly- Seber (CJS) survival estimates are known to be robust

to deviations in model assumptions such as heterogeneous capture probabilities

(e.g. Carothers, 1973, 1979) and permanent trap response (Nichols et al., 1984b).

Because of the similarity of standard-time CJS modelling to estimate } i , and

reverse-time modelling to estimate c i , it might be assumed that c Ã i and k Ã i would be

robust as well. However, this is not true. One important diþ erence between CJS

estimation of survival and reverse-time estimation of c i is that the former process

is based entirely on marked animals, so that assumptions about the homogeneity

of capture probabilities apply to marked animals only. Reverse-time modelling,

however, requires the assumption of homogeneous capture probabilities for both

marked and unmarked animals, and this assumption is more restrictive and

more diý cult to meet. Robustness of estimates based on the temporal symmetry

modelling approach has been investigated by Hines & Nichols (this issue).
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Approaches for the direct estimation of k 549

3 Estimating contributions of demographic components to k

3.1 Conceptual framework

The ecological literature re¯ ects a recent interest in the relative contributions of

diþ erent demographic components and their associated vital rates to population

growth (e.g. Heppel et al., 2000). Here, we describe a probabilistic approach to

viewing such contributions and then consider diþ erent ways of estimating the

resulting probabilities. As in the previous discussion of k and its estimation, assume

interest in a single, open animal population with no age-speci® city. In this simplest

case, we would like to estimate the relative contributions to population growth

between i and i + 1 ( k i) of two demographic components: (1) surviving animals

from the population at time i (denote these as S i), and (2) new recruits (denote

these as B i). The recruits result from reproduction and /or immigration, enter the

population between times i and i + 1, and are present at i + 1. We view population

size, N i + 1, number of survivors, S i , and number of new recruits, B i , as random

variables (Nichols et al., 2000b). Population size at time i + 1 can be written as the

sum of these two demographic components:

N i +1 5 S i + B i . (16)

We can view these two components (S i and B i) of N i + 1 as following a binomial

distribution conditional on N i + 1 and governed by a parameter, c i + 1, denoting the

probability that a member of N i + 1 is a survivor from the previous period (i.e. a

member of S i). The probability distribution of S i , conditional on N i + 1, is thus

written as:

Pr(S i ½ N i + 1 ) 5
(N i +1)!

(S i)!(N i + 1 2 S i)!
c

Si
i +1(1 2 c i +1 )N i+ 1 2 Si (17)

where B i 5 N i + 1 2 S i.

Based on equations (16) and (17), the expectation for population growth rate

can be decomposed as follows:

k i »
E(S i) + E(B i)

E(N i)
5

c i +1N i + 1 + (1 2 c i +1 )N i +1

E(N i)
.

The c i + 1 parameters re¯ ect the relative contributions of the two components, S i

and B i , to population growth. As a speci® c example, if c i + 1 5 0.75, then a member

of N i + 1 is three times more likely to be a survivor from time i than to be a new

recruit, and survival within the population can be viewed as three times more

important to population growth over the interval i to i + 1.

These parameters, c i + 1, can be used to draw inferences about the relative e þ ect

of hypothetical changes in the two demographic components on the population

growth between i and i + 1. For example, assume that recruitment had been

reduced by proportion a between i and i + 1, such that recruitment during

this interval was really (1 2 a )B i . The proportional change in k i resulting from

proportional change a in recruitment is given by a (1 2 c i + 1). The population growth

rate that would have resulted from a proportional reduction in recruitment of

magnitude a would thus be given by k i[1 2 a (1 2 c i + 1)].

In the material that follows we consider the estimation of these parameters,

c i + 1, re¯ ecting proportional contributions of demographic components to k i , We

consider the same three modelling approaches as in Section 2 for the estimation of
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550 J. D. Nichols & J. E. Hines

k i , again focusing on the temporal symmetry approach because it permits more

direct estimation and is easily implemented in MARK (White & Burnham, 1999).

3.2 Jolly- Seber and robust design approaches

As was the case with k i , it is possible to estimate c i , using the original estimates

presented by Jolly (1965) and Seber (1965). Recall that the Jolly- Seber estimator

for the number of new recruits (assuming no losses on capture) is given by:

BÃ i 5 NÃ i + 1 2 NÃ i } Ã i , i 5 2, . . . , K 2 2

the estimated diþ erence between abundance at i + 1 and survivors from i. Estima-

tion of c i can be accomplished either by:

c Ã i + 1 5
NÃ i } Ã i

NÃ i +1

(18)

or as

1 2 c Ã i +1 5
BÃ i

NÃ i + 1

(19)

Estimator (18) is simply the ratio of estimated survivors from period i still present

at i + 1 to the estimated abundance at i + 1. Estimator (19) shows the complement

of c i + 1 (the probability that a member of N i + 1 is `new’ in the sense that it was not

present at i) as the ratio of estimated new animals at i + 1 to estimated abundance

at i + 1. Under the Jolly- Seber model, the above estimators (18, 19) for c i are

de® ned for sample periods i 5 3, . . . , K 2 1. Under the robust design (Pollock,

1982; Pollock et al., 1990), the estimators of equations (18) and (19) are still used,

and the c Ã i are available for all periods for which they are de® ned, i 5 2, . . . , K .

3.3 Superpopulation approach

The demographic contribution parameters, c i , can also be estimated under the

superpopulation approach (Crosbie & Manly, 1985; Schwarz & Arnason, 1996).

Speci® cally, they are estimated as the following function of the survival and entry

probabilities (Schwarz, in press):

1 2 c Ã i +1 5
b Ã i

b Ã i + +
i 2 1

j 5 0 f b Ã j *
i 2 1

l 5 j +1

} Ã l g
.

(20)

The numerator of equation (20) is the probability that a member of the super-

population (N) entered between periods i and i + 1. The denominator of expression

(20) is the probability that a member of N is alive in the population at i + l.

Equation (20) is thus a natural estimator for the probability that a member of N i + 1

is a new recruit.

As was the case with estimation of k i using the superpopulation approach, the } i

and b i are estimated numerically using maximum likelihood (Schwarz & Arnason,

1996; Arnason & Schwarz, 1999), and the c i are then estimated by substituting

the b Ã i and } Ã i into equation (20). Constraints such as p1 5 pK 5 1, or perhaps
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Approaches for the direct estimation of k 551

p1 5 p2, pK 2 1 5 pK , must be imposed to permit estimation of the needed parameters

under the full time-speci® c model ( } t , p t, b t ) (see Schwarz & Arnason, 1996).

3.4 Pradel’s temporal symmetry approach

In Section 2.3, c i was de® ned as the probability that an animal present just before

sampling occasion i was present in the sampled population just after sampling at

occasion i 2 1. This `seniority’ parameter of Pradel (1996) is thus the parameter

re¯ ecting the relative contribution of survivors from the previous period to popula-

tion growth rate (see Nichols et al., 2000b). c i can be directly estimated using

either reverse-time modelling or the temporal symmetry models of Pradel (1996).

Program MARK provides estimates under a `recruitment-only’ model, which

conditions on the ® nal recapture and then estimates the c i and p ¢i described in

Section 2.3. MARK provides approximately unbiased estimates under this reverse-

time model regardless of whether or not some captured animals are not released

following capture. Thus, in the case of losses on capture, MARK appropriately

yields diþ erent estimates of capture probability depending on the time order of the

analysis. Reverse-time modelling with the robust design can also be used to obtain

estimates of c i (Nichols et al., 2000b), and this approach may be especially useful

in the case of substantial heterogeneity of capture probabilities.

Under the full temporal symmetry likelihood, MARK provides approximately

unbiased estimates of c i for the case of all animals released following capture. In

the case of losses on capture, MARK provides approximately unbiased estimates

of p i (as opposed to p ¢i ) and biased estimates of c i (see Hines & Nichols, this issue).

The GAUSS program written by Hines and described by Pradel (1996) does

provide approximately unbiased estimates of c i for the full temporal symmetry

model even when there are losses on capture.

In Section 2.3.4, it was noted that k i could be estimated using only resighting

data. If a recruitment-only model (reverse-time modelling conditional on ® nal

capture) is used with resighting data only, then c i will be estimated as 1 for all

periods that include no releases of previously unmarked animals. This corresponds

to intuition, as all marked animals seen at period i were necessarily present in the

previous sampling period. Estimates of c i obtained using the full temporal symmetry

model of Pradel (1996) with unmarked animals, u i , recorded and included as not

released on capture (Section 2.3.4) will also be positively biased, but can be

modi® ed to estimate the quantity of interest properly. Speci® cally, if c Ã i is the

estimate obtained using the temporal symmetry model of Pradel (1996) with

unmarked animals recorded but not released, then the following modi® ed estimator

properly estimates the probability that an animal sighted at i is an `old’ animal

(present at i 2 1):

c Ã ¢i 5
c Ã i

1 2 (pÃ i 2 1) (1 2 g Ã i 2 1)
. (21)

Recall that (l 2 g i ) denotes the probability that a randomly selected animal from

all those sighted at time i is an unmarked animal. The denominator of equation

(21) thus estimates the probability that an animal present at i 2 1 is not detected

as an unmarked animal at that period. This `adjustment’ to the standard estimator,

c Ã i , is needed because unmarked animals detected at i 2 i have no opportunity to

be detected as old animals at time i.
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552 J. D. Nichols & J. E. Hines

4 Discussion

4.1 Population growth rate, k i

4.1.1 Observation-based estimation methods. Capture- recapture modelling is not

the only way to estimate population growth rate, k i . For animals that are easily

observed, such methods as line transects (Buckland et al., 1993) and aerial surveys

with double-sampling (e.g. Smith, 1995) can be used to estimate population size

and, hence, growth rate. If there is special interest in modelling k i within the

framework of an estimation model (as opposed to modelling the estimates them-

selves, k Ã i ), then it should be possible to construct joint likelihoods that contain

the observation data for multiple sampling periods. The data for each sampling

period would contain the information needed to estimate the corresponding

abundance, N i . If interest is in direct estimation of k i , then it should be possible to

specify a single abundance, e.g. N1, and then to write all other abundances in terms

of this single abundance and subsequent population growth rates, k i . For example,

abundance for period i would be rewritten as:

N i 5 N 1 *
i 2 1

j 5 1

k j . (22)

Joint likelihoods for virtually any formal abundance estimation method (e.g. Seber,

1982; Lancia et al., 1994; Williams et al., in press) can be developed for use with

data from multiple sampling periods and reparameterized using equation (22) for

direct estimation and modelling of population growth. If the natural parameteriza-

tion of the abundance estimation method uses density (D i), rather than abundance

(N i), then D i and D 1 can be substituted for N i and N1 , respectively, in equation

(22). The main point is that capture- recapture need not be used for readily-

observed animals. Instead, it should be possible to estimate directly and model

population growth using whatever estimation methods are most appropriate for the

kind of data collected.

4.1.2 Projection matrix approaches to estimation of k i . In studies directed at count

data for readily-observed species, it is most common to estimate abundance and

population growth rate directly. However, in studies of marked animals, it is not

so common to estimate k i directly using any of the methods described in Section

2. Instead, it is common to estimate survival and reproductive rates, and to then

use these estimates to construct population projection matrices (Caswell, 1989a,

2001). Speci® cally, time-speci® c estimates of survival and reproductive rates are

obtained, and averages of these time-speci® c estimates are then used to construct

projection matrices. Analytic or simulation methods can then be used to compute

the asymptotic growth rate de® ned by the average vital rates. Such an asymptotic

growth rate is frequently thought to be descriptive in some way of the average rate

of population growth over the period of analysis. Several reasons exist for viewing

such asymptotic k s with caution, and we present a few of these here.

Perhaps the most obvious caution involves the asymptotic nature of projection

matrix k s. While they might be expected to perform well in the absence of temporal

variation in vital rates, it is not clear what projection matrix k s should estimate in

the case of substantial temporal variation in vital rates.

Another caution involves the importance of movement to abundance and popula-

tion growth. The k i estimated directly using either capture- recapture or observa-
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Approaches for the direct estimation of k 553

tion-based methods should re¯ ect changes in numbers on the sampled area(s), and

should thus integrate rates of survival, reproduction and movement. In contrast,

single-location population projection matrices typically re¯ ect an asymmetry with

respect to movement. The complements of survival rate estimates computed

using capture- recapture and various other methods include both mortality and

permanent emigration from the study area. Such survival estimates are often

combined in projection matrices with fecundity estimates that are based solely on

components of reproductive rate (e.g., litter size, clutch size, ¯ edglings per nest).

Matrices constructed using such estimates thus include movement in the comple-

ments of survival rates (the components of loss), but not in the fecundity parameters

(the components of gain). One consequence of this movement asymmetry is that

the asymptotic rates of population increase that are computed from such matrices

are frequently too small.

Cooch et al. (2001) developed an innovative approach to dealing with the

movement asymmetry common to many projection matrix investigations. Their

approach involves specifying projection matrix o þ -diagonal elements as functions

of both survival and immigration rate parameters. For situations in which the

number of immigrants is determined primarily by the number of animals in the

destination population, rather than in the source population(s), this approach

seems very reasonable.

Questions involving asymptotic rate of increase could also be addressed using

multistratum projection models (e.g. Rogers, 1966; Schoen, 1988; Lebreton, 1996)

that explicitly incorporate movement. However, use of this approach to deal with

movement requires that at least one of the modelled strata represents `the rest of

the world’ or all potential sources of immigrants other than the locations under

study. However, the modelling of the dynamics of such `catch-all ’ strata is likely to

be very diý cult because of lack of information, yet very important to asymptotic

characteristics of the metapopulation system.

Still another caution involves the importance of probability of breeding in

estimating the fecundity rates to be included in projection matrices. The compo-

nents of reproductive rate used to estimate fecundity (clutch size, nest success,

post¯ edging survival) are typically conditioned on animals that reproduce, whereas

projection matrix fecundity values should also re¯ ect the probability of breeding.

In general, projection matrices are typically constructed using some vital rates that

are estimated reasonably well and some that are estimated poorly or not at all. The

existence of such `weak links’ makes inference problematic.

Projection matrices were developed to project the population-dynamic con-

sequences of repeated application of speci® c sets of vital rates. k and related

asymptotics specify these consequences and are extremely useful for such prospec-

tive analyses. In contrast, k s computed from average values of vital rates should

not necessarily be expected to re¯ ect average population growth for the period over

which the vital rate estimates were obtained. Instead, we believe that direct focus

on either time-speci® c abundance, or on time-speci® c parameters that integrate

the various components of vital rates and movement (e.g. } i and c i), should usually

provide a more reasonable means of estimating k i . These estimates, k Ã i , will not

necessarily be useful in prospective analyses, but should be useful in re¯ ecting

changes in abundance on speci® ed study areas over speci® ed study periods.

4.1.3 Testing and using count statistics as indices. The ability to model and directly

estimate k i provides interesting opportunities for evaluating indices and, if they
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554 J. D. Nichols & J. E. Hines

prove reasonable, for using them to obtain better estimates of population growth.

Count statistics (denote as n i) are often assumed to re¯ ect constant-proportion

indices (Lancia et al., 1994), such that:

E(n i) 5 pN i (23)

where p is the proportionality constant relating the count statistic and true

abundance. If counts are obtained in the same location over time, and if p is truly

time-invariant, then we can estimate k i as:

k Ã i 5
n i +1

n i

(24)

Index surveys typically assume the truth of equation (23) and estimate k i or `trend’

( k assumed constant over time) using expression (24).

When capture- recapture studies are conducted on a study area on which count

statistics are also recorded, then an opportunity exists to test the critical index

assumption expressed in equation (23). We illustrate this possibility using a capture-

recapture data set collected by Spendelow for breeding roseate terns on Falkner

Island, Connecticut, in Long Island Sound (see Spendelow, 1982; Spendelow &

Nichols, 1989). Capture-recapture data from 1978- 1985 were used to estimate k i

using a small model set including the general temporal symmetry model of Pradel

(1996). The general time-speci® c model ( } i , p i , k i) had a small D AIC 5 2.2 (e.g.

see Burnham & Anderson, 1998) and ® tted the data reasonably well (Pearson v
2
30

5 40.6, P 5 0.09). Estimates, k Ã i , ranged from 0.68 to 1.93 and were relatively

imprecise (Table 1).

In addition to the capture- recapture studies, Spendelow conducted nest counts

each year (let n i denote the number of nests counted in year i ). Falkner Island is

relatively small (2 ha) and Spendelow suspected that his crew located a large

proportion of nests. In such a situation, the p of equation (23) re¯ ects detection

probability, and if this probability is close to 1, then it would be reasonable to

expect it to exhibit relatively little temporal variation. If the assumption of temporal

constancy of p is true, then n i may provide a reasonable index to breeding

Table 1. Rates of increase, k i, estimated directly from capture- recapture data with and without the use

of nest count covariate data, Roseate Terns studied by J. Spendelow, Falkner Island, Connecticut,

1978 - 1985

C-R data only C-R data with covariatesa

Year (i) k Ã i SEÃ ( k Ã i) k Ã i SEÃ ( k Ã i)
b ni + 1

c

n i

1978 Ð Ð 0.76 0.044 0.86

1979 0.71 0.241 0.50 0.029 0.56

1980 1.33 0.320 1.65 0.096 1.85

1981 0.71 0.133 0.65 0.038 0.73

1982 0.68 0.134 0.92 0.054 1.04

1983 1.93 0.456 1.30 0.077 1.46

1984 Ð Ð 1.02 0.060 1.15

a
Estimated using the following ultrastructural model, k i 5 b (ni + 1 /ni): b Ã 5 0.89, SEÃ ( b Ã ) 5 0.044.

b SEÃ includes quasilikelihood variance in¯ ation factor, cÃ 5 1.445.
c
n i is the number of nests counted in year i.
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Approaches for the direct estimation of k 555

population size, and equation (24) might provide a reasonable estimator for k i . For

the tern data, the ratio of count statistics ranged from 0.56 to 1.85 (Table 1).

We included in the model set a model with the same structure as ( } t , pt , k t),

except that we modelled k i as:

k i 5 b ( n i +1

n i ) . (25)

Under the hypothesis that the count statistic is a good index, b should be close to

1, and the AIC for the new model ( } t , pt , k n ),should be low. The resulting estimates

were b Ã 5 0.89, SEÃ ( b Ã ) 5 0.044, and the model had the smallest AIC value in the

model set, D AIC 5 0.0. We do not view the ultrastructural model of equation (25)

as a perfect description of the data, but prefer to view it as a random eþ ects model

(see Link, 1999; White & Burnham, 1999) with residual variation about the

relationship of equation (25). We thus computed a variance in¯ ation factor, cÃ , as

the likelihood ratio statistic for the test of model ( } t , pt , k n ) versus the general model

( } t , pt , k t), divided by the corresponding degrees of freedom: cÃ 5 5.78/4 5 1.45.

This cÃ was then applied to the model-based variance estimates to obtain more

appropriate variance estimates (Burnham et al., 1987; Lebreton et al., 1992

Link, 1999). The annual estimates of population growth rate resulting from the

ultrastructural modelling ranged from 0.50 to 1.65 and had substantially smaller

standard errors than the k Ã i based on the full, time-speci® c model (Table 1). We

tried some ultrastructural models in addition to that of equation (25), although

this model performed the best of those that were tried and was preferred a prior i,

based on the expected relationship under the assumption of a good index (equations

(23) and (24)).

The point of this example is to suggest that direct estimation of k i may provide

opportunities for testing the critical, yet seldom tested, assumption underlying

index statistics. If it does appear that the count statistic provides a reasonable

index, then the extra information provided by the counts can aid in the estimation

of k i . In our example, the gains in precision were substantial. Large-scale surveys

such as MAPS (e.g. DeSante et al., 1995) that incorporate both capture- recapture

and point counts, oþ er the potential to test the utility of the point counts as indices

to avian abundance using the type of analysis presented here.

4.1.4 Combining capture- recapture and abundance data using joint likelihoods. In

Section 4.1.1, we suggested that observation-based data collected for use with

formal estimation methods could be used to model k i . Speci® cally, we suggested

that equation (22) could be used to provide the link between abundance and

population growth rate. In some studies, investigators collect both capture- recap-

ture and observation-based data for use in estimation. In the case of passerine

studies, for example, one might collect capture- recapture data with mist-netting,

in addition to point count data obtained under either distance sampling (Buckland

et al., 1993) or double-observer (Nichols et al., 2000a) protocols. In such studies,

joint likelihoods could be developed incorporating both types of data with their

respective models of the sampling process. The separate components of the

likelihood dealing with the diþ erent data types would be linked by the shared

parameters, k i . The modelling strategy might include a general model in which the

k i for the diþ erent data types were modelled with separate parameters and a

reduced-parameter model in which the k i were shared by both components of the
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556 J. D. Nichols & J. E. Hines

likelihood. Use of likelihood ratio testing and AIC would ® rst provide an indication

of the reasonableness of the assumption that the modelled k i indeed represented

the same parameter. If this was concluded to be true, then the estimates of k i

resulting from the joint modelling should be more precise than estimates resulting

from the use of either approach separately.

We note that combining data types for use with joint likelihoods is not new and

has been pro® tably used in other estimation problems involving capture- recapture

and ring-recovery modelling (see Williams et al., in press). The robust design can

be viewed as a combination of data from capture- recapture studies of closed and

open populations (Pollock, 1982; Pollock et al., 1990). Nichols et al. (1992) and

Nichols & Hines (1993) dealt with tag loss by considering joint likelihoods with

separate components for recapture and resighting data. The joint model of

Burnham (1993) combines capture- recapture and ring recovery data, and the

models of Barker (1997) combine capture- recapture data with ancillary observa-

tions. Freeman et al. (1992) combined ring recovery data with observations of

radio-marked individuals, and Powell et al. (2000) used both capture- recapture

and radio-telemetry data. In an application very similar to the ideas presented

above on estimating k i , Besbeas et al. (in review) recently combined Common Bird

Census data with ring recovery data in a joint likelihood in which the two

components shared survival parameters. The addition of the census data permitted

inference about recruitment rate (a parameter not directly studied) and about the

role of recruitment in bringing about changes in population growth.

It seems most reasonable to us to address questions about density-dependence

by investigating the relationship between abundance or density and the vital rates

themselves (e.g. Nichols et al., 1984a; Leirs et al., 1997). However, many ecologists

prefer to focus on the relationship between k i and N i. Such investigations are

inevitably based on estimates, and the negative covariance between k Ã i 5 NÃ i + 1 /NÃ i

and NÃ i induced by sampling variation renders the suite of proposed tests for

density-dependence virtually useless (see Shenk et al., 1998). Perhaps, observation-

based data could be parameterized with time-speci® c abundance, N i , and capture-

recapture data could be parameterized with k i . The link between the two compo-

nents of the likelihood would then occur via speci® cation of a functional relation-

ship, e.g. k i 5 f (N i). Sampling variation would still exist in the estimates, but the

independent data sets should not produce the negative sampling covariance that

exists between k Ã i and NÃ i when both sets of parameters are estimated from the same

data. It would seem that such modelling would produce valid tests for density-

dependence of population growth. ARMA and related models parameterized in

this manner would be expected to yield more reasonable results than those based

on single data sets.

4.1.5 Joint likelihood robust design. The robust design of Pollock (1982) was

mentioned in Sections 2.1 and 3.2, in conjunction with the Jolly- Seber model, as

an alternative source of estimates of abundance, N i , and new recruits, B i . Kendall

et al. (1995) showed how to develop joint likelihoods for capture- recapture data

obtained at two diþ erent temporal scales. The closed-population and open-popula-

tion portions of the likelihoods are linked because they share capture probability

parameters. The robust design models of Kendall et al. (1995, 1997) can be termed

`conditional’ in the sense that capture probabilities for the closed portions of the

likelihoods are written as conditional on the total number of animals caught at

least once. An alternative parameterization that may prove useful in estimating k i
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Approaches for the direct estimation of k 557

includes abundances, N i , as parameters of the closed portions of the likelihood

and can thus be termed `unconditional’ . For example, the models of Otis et al.

(1978) implemented in CAPTURE (Rexstad & Burnham, 1991) include abun-

dance as a parameter in the likelihood.

We envisage a parameterization for the K-sample closed-population portions of

the joint likelihood that is based on the parameterization of equation (22). The

likelihood could include the parameter for population size for the initial primary

period, N 1 , but all abundances for subsequent primary periods would be written

as products of N 1 , and the appropriate k i (see equation (22)). These k i parameters

would be shared by the open portion of the likelihood, modelled using Pradel’ s

(1996) temporal symmetry approach. As when count data are combined with

open-model capture- recapture data (Section 4.1.4), the addition of closed-popula-

tion data should result in increased precision of the parameter estimates. In

addition, as in Section 4.1.4, it should be possible to model density-dependence

directly using N i from one portion of the likelihood and k i from the other portion.

4.1.6 Combining capture- recapture and other vital rate data using joint likelihoods.

Some studies might combine capture- recapture sampling with other sampling

directed at vital rates or their components (Green, 1999). For example, in avian

studies it is fairly common to locate nests and estimate nest success, one component

of reproductive rate, using a May® eld-type estimator (May® eld, 1961; Johnson,

1979; Hensler & Nichols, 1981). It is also becoming more common to combine

radio-telemetry on a subsample of birds with traditional capture- recapture (e.g.

Powell et al., 2000). Such designs sometimes permit separate estimation of true

survival and permanent emigration, the two primary components of loss.

Joint analyses of such data sets oþ er the ability to address questions about the

temporal covariation of parameters. Such covariation is relevant to one of the

approaches to de® ning `importance’ of demographic components and vital rates

(see Section 4.2.1). For example, Caswell’ s (2000) de® nition of retrospective

perturbation analysis focuses on historical patterns of temporal covariation between

vital rates and population growth rate. `Key factor analysis ’ (e.g. Morris, 1959;

Varley & Gradwell, 1960) and related approaches (e.g. Reynolds & Sauer, 1991;

Johnson et al., 1992) are based on time series of estimates of vital rates and

population size or growth rate. Morris (1959, p. 580) de® ned key factors as those

`that cause a variable . . . mortality and appear to be largely responsible for the

observed changes in population size’ . Correlation and regression analyses are

used to investigate the relative correspondence between temporal variation in the

diþ erent vital rates and in population size or growth. Key factor analysis and

related approaches have seen only limited success in animal population ecology,

primarily because of the failure to properly incorporate sampling variation and

covariation in applications of the key factor approach (Kuno, 1971; Manly, 1977,

1979).

Joint analyses of diþ erent data sets permitting estimation of abundance and k i ,

as well as components of population gain and loss, o þ er the possibility of conducting

retrospective analyses focused on temporal covariation in a manner that properly

accounts for sampling variation. For example, k i could be modelled as a function

of such factors as nest success (e.g. using nest visitation data), proportion of adults

that breeds (e.g. using data on presence- absence of brood patch or other indicators

of breeding among captured birds, possibly using multistate modelling to account

for diþ erences in capture probabilities of birds in the two states, Nichols et al.,
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558 J. D. Nichols & J. E. Hines

1994), and survival or emigration rates (e.g. using telemetry data). Ultrastructural

modelling of k i using such quantities estimated in another portion of the likelihood

should provide a robust means of addressing questions about temporal covariation

of k i and speci® c vital rates. A similar approach could be used to decompose total

rates of loss (1 2 } i) or gain (e.g. using per capita recruitment rate ® rst de® ned in

Section 2.2, fi). For example, (1 2 } i) could be based on capture- recapture data

and modelled as a function of rate of emigration based on telemetry data. In

summary, we believe that this joint likelihood approach using diþ erent data sets

provides a reasonable way to investigate temporal covariation between component

rates and integrated rate parameters that are functions of these components.

4.1.7 Capture- recapture estimation of k i using more complicated models. Pradel’ s

(1996) temporal symmetry approach to the estimation of k i is relatively new, and

there has been little work on extension of this approach to more complicated models.

An exception to this is very recent work on estimation of k i using multistate models

(Lebreton, personal communication). This approach has potential utility in estimat-

ing population growth of single-site populations composed of individuals in multiple

physiological or behavioural states, as well as of animals sampled at multiple loca-

tions in a metapopulation system. Because of the generality of the multistate frame-

work, Lebreton’ s generalization of k i estimation should be widely applicable.

4.1.8 Additional uses of k Ã i . Here, we simply list some additional uses of Pradel’ s

(1996) approach. In addition to the modelling of k i suggested in previous sections,

we note the possibility of modelling k i as functions of environmental covariates.

Certainly, the modelling of the vital rates that produce k i (e.g. } i , fi) as functions

of environmental covariates is a useful approach to understanding environmental

in¯ uences on population dynamics (e.g. North & Morgan, 1979; Lebreton et al.,

1992). In some cases, however (e.g. when an environmental covariate in¯ uences

multiple vital rates), it will be useful to investigate overall environmental in¯ uences

by directly modelling a parameter such as k i that integrates the e þ ects on diþ erent

vital rates and re¯ ects changes in the state variable of interest, N i .

Population growth rate itself is a parameter that can be used to judge the health

of a population over a period of study. If a capture- recapture time series is reason-

ably long, then a variance components approach (Burnham et al., 1987; Skalski &

Robson, 1992; Link & Nichols, 1994; Gould & Nichols, 1998) can be used to

estimate the true temporal variance of k i using a random eþ ects perspective (White

& Burnham, 1999). This variance is very relevant to extinction probability (e.g.

Lewontin & Cohen, 1969; Leigh, 1981; Goodman, 1987) and emphasizes the

potential utility of the direct estimation and modelling of k i for population viability

analyses (also see White, 2000).

4.2 Contributions of demographic components to k

4.2.1 Relative `importance’ of components to k : temporal covariation. Much has

been written in recent years about ways of assessing `importance’ of vital rates or

demographic components to population growth rate, and recent discussions

(Heppel et al., 2000) obviate the need for a review here. Instead, we will focus

primarily on the manner in which direct capture- recapture estimation can contri-

bute to these concepts. As noted in Section 4.1.5, one approach to identifying

important vital rates or demographic components focuses on historical patterns of
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Approaches for the direct estimation of k 559

temporal covariation between vital rates and population growth rate (Morris, 1959;

Varley & Gradwell, 1960; Caswell, 2000). We believe that use of multiple data

sources from the same study location in joint likelihoods that include parameters

for population growth and vital rates (or associated components) provides a means

of addressing temporal covariation through the use of ultrastructural modelling

(see Section 4.1.6). This approach should be superior to the numerous applications

of key factor analysis that are based on repeated counts.

Life table response experiments (LTR Es) provide another approach to assessing

covariation of k and vital rates (Levin et al., 1987; Caswell, 1989b, 1996, 2000;

Cooch et al., 2001). The objective of the LTRE approach diþ ers from that of the

approach described in Section 4.1.6 in the nature of the k that is selected for

investigation. The approach using joint likelihoods and ultrastructural modelling

focuses on the expected time-speci® c rates of population change ( k i 5 E(N i + 1/N i)),

whereas the LTRE approach focuses on asymptotic growth rates (denoted as k
*
i )

that are de® ned by the time-speci® c vital rates. The methodological decision should

thus be based on the objectives of the e þ ort, as both approaches provide reasonable

ways to meet their respective objectives.

4.2.2 Relative `importance’ of components to k : proportional contributions. As is the

case for the methods for investigating temporal covariation (Section 4.2.1), the

methods for estimating c i presented in Section 3 are retrospective, in the sense that

they pertain to a speci® c historical period. However, the approach involving c i does

not share the focus on temporal covariation of population change and demographic

components or vital rates. Instead, we present a direct decomposition of population

growth rate into demographic components. The c i parameters are not based on

temporal covariation with population growth, but instead re¯ ect the magnitudes of

contributions to growth.

Our focus on proportional contributions to k i can be viewed as a retrospective

analogue of elasticity analyses (Caswell et al., 1984; de Kroon et al., 1986; van

Groenendael et al., 1988; Caswell, 1989a, 2001). Elasticity (ei j) of projection matrix

element a i j is de® ned as:

ei j 5
¶ log k

¶ log a i j

5
¶ k

¶ ai j

a i j

k
. (26)

Elasticity is the proportional change in the asymptotic k resulting from an in® nites-

imal proportional change in matrix element ai j (Caswell et al., 1984; de Kroon et al.,

1986). Elasticities based on projection matrices sum to 1 (e.g. de Kroon et al., 1986;

Messerton-Gibbons, 1993) and can thus be interpreted as relative contributions to

population growth rate. This interpretation leads naturally to the view that elasticity

re¯ ects the relative importance of the associated vital rate, in the sense that propor-

tional changes in vital rates with large elasticities bring about larger changes in k than

do the same proportional changes in vital rates with smaller elasticities.

As noted above, the c i + 1 parameters estimated using our approach are closely

related to the concept of elasticity of k i with respect to demographic components

and their associated vital rates. In Section 3 we decomposed expected population

growth rate, k i , into components associated with survivors from the previous

period, E(S i), and new recruits, E(B i). We can compute a time-speci® c analogue

of elasticity for the survivor component as:

¶ log k i

¶ log E(S i)
5 c i + 1 .
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560 J. D. Nichols & J. E. Hines

If we focus on vital rates associated with demographic components rather than the

components themselves, then we can express the numbers of survivors and recruits

as functions of the population at time i and again compute an analogue of elasticity.

If we denote survival rate from time i to i + 1 as E(S i /N i) 5 } i , then the analogue

of elasticity of k i with respect to } i is again given by:

¶ log k i

¶ log } i

5 c i + 1 .

Despite the analogy between these proportional contribution parameters (c i) and

elasticities derived from population projection matrices, these quantities diþ er in

several respects. Perhaps the most obvious diþ erence involves the asymptotic

nature of elasticity measures derived from projection matrices, contrasted with the

applicability of the c Ã i to the speci® c time interval (i 2 1 to i ). We cannot necessarily

use a speci® c c Ã i to characterize a population over a long period of time (although a

mean of c Ã i might be useful for such a purpose), and neither can we expect an

asymptotic elasticity value to necessarily be a useful descriptor for population

change over a speci® c interval. The asymptotic nature of elasticity analyses leads

to uncertainty about their relevance to situations involving either transient dynamics

that precede asymptotic behaviour, or simple temporal variation in vital rates and

population growth. We might expect elasticity analyses to provide reasonable

approximations for situations involving relatively small temporal variation, but

perhaps not for populations inhabiting highly variable environments. Generally, we

would expect the c i parameters to be more useful in retrospective analyses (where

`retrospective’ refers simply to estimation over a speci® c historical period, and not

to temporal covariation), and matrix-based elasticities to be more useful for

prospective analyses.

Another diþ erence between elasticities and c i involves geographic closure and

the incorporation of movement into inferences about population change. Projection

matrix approaches are typically parameterized with birth and death rates (see

Section 4.1.2) and are ideal for populations that are geographically closed. If our

attention is focused on changes in numbers of animals on a particular area of

interest, however, movement is frequently an important contributor to population

dynamics. We can estimate c i parameters corresponding to contributions from

other sampled locations and, in some cases, from all non-sampled areas (see

Section 4.2.3 and Nichols et al., 2000b). Even if we estimate c i using data from

single-age, single-location studies as described in Section 3, the inference about

relative contributions of losses and gains to c i includes movement and is not

restricted to an abstract system governed by birth and death rates in the absence

of movement.

4.2.3 Capture- recapture estimation of c i using more complicated models. In Section 3,

we focused on the contributions of old survivors and new recruits to population

growth rate, but the approach can be readily extended to deal with multiple ages

and strata (e.g. locations, physiological states, etc). For example, Nichols et al.

(2000b) considered a 2-age model in order to compute c i associated with (1)

surviving adults from the previous period; (2) surviving young from the previous

period; and (3) immigrants. This analysis permits separation of the relative contri-

butions of in situ reproduction and immigration to population growth (e.g. Connor

et al., 1983; Nichols & Pollock, 1990), a topic that seems very relevant to questions
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Approaches for the direct estimation of k 561

about source-sink (Pulliam, 1988) and open-recruitment (Roughgarden et al.,

1985, 1988) systems. Nichols et al. (2000b) also considered a single-age, multiple-

location model. The resulting c Ã i decomposed population growth rate at one location

into components associated with immigration from each sampled location as well

as from outside the study system of sampled locations. These estimates should

be relevant to de® ning source-sink systems (Pulliam, 1988) and to modelling

metapopulation dynamics (e.g. Hanski & Gilpin, 1997).

4.2.4 Additional uses of c Ã i . Temporal variation in the relative contributions of

diþ erent demographic components is a topic of recent interest in population

dynamics (Gaillard et al., 1998). Estimates of c i and associated sampling variances

and covariances over a period of time can be used to estimate true temporal

variance in the relative contribution of a component of interest using a variance

components approach (see Burnham et al., 1987; Skalski & Robson, 1992; Link &

Nichols, 1994; Gould & Nichols, 1998; White, 2000). The relative variability

versus stability of contributions of diþ erent demographic components to population

growth is an interesting characteristic that may be relevant to predictions and

projections of future population dynamics.

Reduced-parameter models can be developed to incorporate restrictive assump-

tions about temporal variation in the proportional contribution parameters. In

particular, evaluation of the assumption that c i 5 c should be relevant to the

question of whether use of asymptotic elasticities derived from projection matrices

is reasonable. In some instances, it may be useful to model the c i using an

ultrastructural modelling approach (e.g. Lebreton et al., 1992). For example, we

might consider modelling the c i as a function of environmental covariates or

information about neighbouring populations.

4.2.5 On the relevance of elasticity and c i to conservation and management. The

recent literature contains disagreement about the relevance of various measures of

`importance’ of vital rates to population growth rate (e.g. see Heppel et al., 2000).

Here we consider two general objectives of conservation/management e þ orts and

consider the relevance of elasticity and c i to these objectives. The ® rst objective is

often loosely said to involve identi® cation of the `cause’ of a change in population

growth rate and the subsequent reversal of k i by management directed at the `causal

factor’ . The idea of a `cause’ of a change in k i appears to be a logically conditional

statement, conditioned on two points in time. The k i for the two times must diþ er,

and the diþ erences in associated vital rates can be viewed as the `cause’ of the

change. In some cases, we may be able to associate a speci® c environmental factor

with the vital rate that diþ ers between the two times, and if this factor can be

in¯ uenced by management actions, then such actions might be recommended. An

example of such a situation might involve the reduced reproductive rates and,

hence k i , of raptor populations in North America associated with application of

organochloride pesticides (e.g. Newton, 1986, 1998). Restrictions on pesticide use

were implemented and aþ ected populations exhibited increased reproductive rates

and k i (e.g. Newton, 1986, 1998). Although capture- recapture estimates of k i and

associated vital rates (e.g. } i , fi) can be very useful in the identi® cation of `cause’ ,

as de® ned here, estimated proportional contributions of vital rates to k i do not

appear to be especially relevant to this sort of objective.

The other general objective of conservation/management might be simply to

bring about a change in k i . Either abundance or k i is judged to be unacceptable,
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562 J. D. Nichols & J. E. Hines

and the task is to bring about a desired change via management action. In this

case, demographic diþ erences between the present and some speci® ed past time

are not necessarily relevant, as the decision to bring about change is based on the

present state of the system. This approach is typical of many management programs

(e.g. Nichols et al., 1995). In some cases, only one type of management action is

possible (e.g. hunting regulations), and information about relative contributions of

diþ erent vital rates to k i will not be especially relevant to management decisions.

However, if multiple management actions aþ ecting diþ erent vital rates are possible,

then consideration of elasticities and c i can be an important part of the decision

process. Even in this situation, though, we believe that blind focus on parameters

with the highest values of elasticity and c i is not wise (see Heppel et al., 2000 for

similar views).

Instead, we propose the following metric as a conceptual guide to thinking about

elasticity and management actions:

m k, i j 5
¶ log k

¶ log a i j

¶ log a i j

¶ xk

¶ xk

¶ yk

(27)

where xk denotes management action of type k, which can be viewed as a continuous

variable (e.g. proportion of nests arti® cially protected from predation), yk denotes

the unit costs (e.g. in some common currency such as dollars) of management

actions of type xk, and m k, ij thus represents the proportional change in k resulting

from the in¯ uence of a small change in management action of type xk on vital rate

a i j , per unit cost associated with the action. The ® rst term of equation (27)

represents elasticity, ei j, or its real-time analogue c i , and re¯ ects our belief that this

quantity is indeed relevant to management decisions. The second term of equation

(27) represents the proportional change in vital rate a i j associated with small

changes in some continuous action xk , and the ® nal term re¯ ects the cost of

implementing the change in management action xk . Although we apologize for the

sloppy mathematical notation, we believe that expression (27) makes the relevant

point that management decisions should be based not only on elasticity and related

concepts, but also on the existence and knowledge of management actions that

in¯ uence the diþ erent vital rates and on the true costs of these management

actions.

Equation (27) pertains to eþ ects on k i of changes in vital rate ai j brought about

by changes in management action xk. If interest is focused not on a single vital

rate, but on all vital rates in¯ uenced by changes in action xk, then we might

consider the following expression:

m k. 5 +
i j

¶ log k

¶ log ai j

¶ log a i j

¶ xk

¶ xk

¶ yk

. (28)

Much of the science of animal conservation and management is associated with

the second term of equations (27) and (28), which involves changes in vital rates

associated with diþ erent management actions. Sometimes, managers admit the

existence of structural uncertainty characterized by diþ erent competing models of

how vital rates respond to speci® c management actions. In such cases, adaptive

management represents a reasonable way to proceed (Walters, 1986; Williams,

1996). In the case of North American waterfowl management, for example, four

models are used to characterize our uncertainty about the manner in which changes

in hunting regulations are translated into changes in the vital rates (speci® cally,
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Approaches for the direct estimation of k 563

reproductive rates (via density-dependence) and age-speci® c survival rates; e.g.

Nichols et al., 1995; Johnson et al., 1997; Williams et al., in press). Estimates of

population growth and survival are very relevant to the adaptive management

process, as comparisons of these estimates to the predictions of the competing

models are used each year to formally update the measures of faith in the diþ erent

models (Williams, 1996; Williams et al., in press).

Thinking in terms of expressions (27) and (28) is also relevant to conservation

problems for which objectives have not yet been formally speci® ed. For example,

adult survival will nearly always exhibit the largest elasticity for long-lived bird

species. However, it may be virtually impossible to in¯ uence adult survival via any

sort of management, whereas it may be possible to in¯ uence at least some

components of reproductive rate, such as nest success. Despite the far greater

elasticities associated with adult survival (e.g. the ® rst term of expressions (27) and

(28)), sometimes it may be wise to focus management eþ orts on reproductive rate,

as reproduction may be much more responsive to cost-e þ ective management

actions (the second two terms in expressions (27) and (28)).

Expressions (27) and (28), and indeed our entire discussion in this section, are

abbreviated and greatly simpli® ed. Issues such as covariances among vital rates

and density-dependence can potentially complicate matters but go beyond the

scope of this paper. Our intention is to make two central points. The ® rst is simply

that quantities such as elasticity and c i that re¯ ect the relative contributions of

diþ erent vital rates to population growth are not relevant to some conservation

questions (e.g. searches for `the cause’ of a speci® ed demographic change). Our

second point is that ei j and c i are relevant to more general questions about

management and conservation, but even then need to be considered in conjunction

with other information about the e þ ects of speci® c management actions on the

diþ erent vital rates and the relative costs of these actions.

In addition to these central points of the above discussion, we oþ er the observa-

tion that many management and conservation eþ orts appear to be characterized

by fuzzy thinking. Many eþ orts include a focus on metrics (such as elasticity) that

are indeed relevant to management and conservation, but we see little indication

of clear thinking about exactly how such metrics ® t into a decision-theoretic

approach to meeting management or conservation objectives. Dynamic optimiza-

tion approaches that yield state-speci® c management strategies have been used

sporadically in natural resource management for some time (e.g. Anderson, 1975;

Williams, 1982, 1989; Johnson et al., 1997; Williams et al., in press), but still do

not seem to be widely appreciated as the most reasonable approach to diý cult

management and conservation problems. We strongly recommend consideration

of such decision-theoretic approaches for those seriously interested in management

and conservation problems.

4.3 Informed estimation of k i and c i : some cautions

In this ® nal section we simply warn the reader against uncritical estimation and

use of estimates, k Ã i and c Ã i . With respect to estimation methods themselves, it is

important to treat losses on capture properly when dealing with actual losses and

when treating sightings of unmarked animals as losses on capture when using

resighting data to estimate k i and c i . It is also important to recognize that either of

two population growth rates can be estimated for studies with losses on capture;

growth rates associated only with natural processes or growth rates that include
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the sampling losses. Of course selection of the appropriate parameter for any

particular study depends entirely on the question(s) being addressed.

Survival rate estimates resulting from conditional CJS modelling are known to

be fairly robust to many kinds of assumption violations, and it is tempting to assume

that this robustness also characterizes other rate parameters such as k i and c i . As

noted above, however, reverse-time and temporal symmetry modelling require equal

capture probabilities for marked and unmarked animals, and failures of this assump-

tion can have serious consequences for estimates of k i and c i , producing substantial

bias in many cases (Hines & Nichols, this issue). The assumption of equal capture

probabilities for marked and unmarked animals is diý cult to test without the robust

design (Nichols et al., 1984b) and thus requires special vigilance.

A ® nal point not yet discussed involves changes in the size of the study area and

resultant consequences for the interpretation of parameters such as k i and c i . For

example, consider an increase in the size of the study area that occurs during

sampling period i + 1. Because k i is de® ned as the expected ratio of abundances at

periods i and i + 1, an increase in study area would be expected to produce an

increase in k i even in the absence of any increase in survival or recruitment rate

(see Hines & Nichols, this issue, for an expression for the magnitude of the bias).

Similarly, the relative contribution of survivors to population growth between i and

i + 1(c i + 1) will be reduced because of the increased number of `new’ animals

associated with the new portion of the study area. The recommendation is simply

to consider such changes in study area when interpreting estimates of k i and c i and

to identify properly the parameter needed to address the question(s) of interest.

5 Conclusions

We believe that direct estimation of k i and c i using capture- recapture data presents

interesting opportunities that should be exploited. In Section 4, we discussed

several ideas for joint analyses using capture- recapture and other data to better

estimate quantities of interest (e.g. k i) and to address questions that remain resistant

to other approaches. We speculate that the direct estimation approaches described

in this review should provide better estimates than the multi-step approach of

computing average vital rates and computing k i and ei j using projection matrix

asymptotics. This conjecture could be tested via computer simulation, and this

might be an interesting exercise. Such an exercise would also provide some idea of

how much faith to place in such asymptotics when direct estimation approaches

are not possible. We emphasize that this speculation concerns only the use of

projection matrix asymptotics as estimates corresponding to speci® c places and

times. Projection matrix asymptotics are clearly useful for prospective analyses and

are the tool of choice for such work.

We view the direct estimation methods reviewed here simply as contributions to

the animal ecologist’ s toolbox. This toolbox already includes standard capture-

recapture methods for estimation of abundance and vital rates, and projection

matrix methods for investigating asymptotic characteristics of populations governed

by speci® ed sets of vital rates. We also view these methods as providing a step

towards the uni® cation of distinct approaches to the study of animal population

dynamics. Demographic estimation and projection are closely related endeavours,

and it is useful to recognize their similarities as well as their diþ erences. A ® nal

recommendation is simply to specify analytic objectives clearly in order to facilitate

selection of the appropriate tool for accomplishing them.
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